If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+33t=0
a = -16; b = 33; c = 0;
Δ = b2-4ac
Δ = 332-4·(-16)·0
Δ = 1089
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1089}=33$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(33)-33}{2*-16}=\frac{-66}{-32} =2+1/16 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(33)+33}{2*-16}=\frac{0}{-32} =0 $
| 8x+12=-15x-111 | | -10(2x-5)=3(-8+9x) | | 44x-26-3x=12+41x-38 | | 3/5x=11/5 | | -6x-9=-9x | | 3n+2n=40 | | 9x+24+2x*2=-2 | | 12.54+0.11(x+3)=13.04-0.12 | | 2x-96=-4x-6 | | 12.54+0.11(x+3)=13.04+0.12 | | .60=30x | | -6m+8=2 | | 65*x+2=90 | | 5(x-4)=130/13 | | 0.4(c+12)=2c+18 | | 4x-9+3x-2=3x-9 | | 11×=8x+21 | | 9(x+8=153 | | 4x-9=3x-2+3x-9 | | 12x^2+10x=28 | | 4x^2-4x+4=7x+7 | | -5)1+2n)=15 | | 5x+26-2x5x=681 | | 1/3w+4/5w=1/15 | | 7z+3.2=3z+4.8 | | 16x+-3=95 | | 2x+7x-7=23 | | n+3n=560 | | Y=-8x-14 | | 2x-8x+54=4x+34 | | 4x+-3=95 | | 24m/8=0 |